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The objective of this paper is to explain, in as much detail as possible, the physical
mechanisms responsible for the reduction of skin friction in a microbubble-laden
spatially developing turbulent boundary layer over a flat plate, for Reθ = 1430. Our
DNS results with microbubble volume fraction ranging from φv= 0.001 to 0.02 show
that the presence of bubbles results in a local positive divergence of the fluid velocity,
∇ · U > 0, creating a positive mean velocity normal to (and away from) the wall which,
in turn, reduces the mean streamwise velocity and displaces the quasi-streamwise
longitudinal vortical structures away from the wall. This displacement has two main
effects: (i) it increases the spanwise gaps between the wall streaks associated with the
sweep events and reduces the streamwise velocity in these streaks, thus reducing the
skin friction by up to 20.2% for φv = 0.02; and (ii) it moves the location of peak
Reynolds stress production away from the wall to a zone of a smaller transverse
gradient of the mean streamwise velocity (i.e. smaller mean shear), thus reducing the
production rate of turbulence kinetic energy and enstrophy.

1. Introduction
Experimental evidence obtained during the past three decades indicates that

injection of gaseous microbubbles (diameter ranging from 1 to 1000 microns, and at a
relatively large volume fraction (up to φv =0.7)) into a liquid turbulent boundary layer
(TBL) over a flat plate (Madavan, Deutsch & Merkle 1984; Pal, Merkle & Deutsch
1988) or over axisymmetrical bodies (Deutsch & Pal 1990; Clark III & Deutsch
1991) can reduce the skin friction by as much as 80% from its value without bubble
injection. However, the basic physical mechanisms responsible for that reduction are
not yet fully understood.

The first experimental study of the effect of microbubbles on skin friction was
performed by McCormick & Bhattacharyya (1973). Their hydrogen microbubbles
were produced by electrolysis via a copper wire wound around a towed body of
revolution. The complexity of the flow did not allow discrimination between the effects
of skin friction and form drag. Madavan et al. (1984) reviewed the experimental work
performed by a group of Soviet scientists during the 1970s on skin friction reduction by
microbubbles. The optical (laser) and photographic measurements of Pal et al. (1988)
were conducted for a TBL flow (3 × 103 � Reθ � 104) over a flat plate mounted in
a water tunnel. The orientation in which buoyancy causes bubbles to rise out of
the boundary layer is referred to as the plate-on-bottom case, while for the case of
plate-on-top the tunnel was rotated 180◦. These measurements showed the existence
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Figure 1. Schematic of bubble-laden turbulent boundary layer flow over a flat wall.

of a clear, bubble-free water region between the bubble cloud and the plate for the
plate-on-bottom case. The clear water region did not occur in the plate-on-top case.
Hence, it was concluded that the clear water region was the result of buoyancy,
rather than viscous lift. The spreading rate of the TBL was larger for the plate-on-
bottom configuration, demonstrating that buoyancy is a factor, but the persistence of
spreading for the plate-on-top configuration where buoyancy inhibited such motion
indicated that turbulent diffusion was also significant.

Recently, Xu, Maxey & Karniadakis (2002) performed a direct numerical simulation
(DNS) of a fully developed turbulent channel flow (Re = 3000) laden with bubbles
to study drag reduction. The volume fraction of bubbles, φv , varied between 0.04
and 0.08. The ratio of bubble radius to the channel half-height ranged from 0.1 to
0.3. The bubbles were injected in two layers parallel to the wall and at distances of
y+ = 20 and y+ = 54. The number of bubbles in the flow ranged from 60 to 1600.
Buoyancy effects were neglected. Xu et al. stated that their results “point to at least
three mechanisms involved: one linked to the initial seeding of the bubbles, the second
associated with the density effects, where the bubbles reduce the turbulent momentum
transfer, and the third governed by specific correlations between the bubbles and the
turbulence” and added that “the streaks seem to be affected very little for the cases
we investigated here and they became slightly more disorderly due to the chaotic
forcing imposed by the bubbles.”

Our objective in the present paper is to explain, in as much detail as possible, the
physical mechanisms responsible for the reduction of skin friction in a microbubble-
laden spatially developing turbulent boundary layer over a flat plate, for Reθ = 1430.

2. Mathematical description
Figure 1 shows a schematic of the TBL flow where the gravitational acceleration

vector is perpendicular to the wall, but it can be pointing either downwards (plate-
on-bottom) or upwards (plate-on-top).

We employ the Eulerian–Lagrangian approach in which we solve the fluid continuity
and momentum equations in an Eulerian framework, (2.1) and (2.2) below, whereas
the bubble acceleration equation, (2.3), is solved for each bubble to track its trajectory
in time. We treat the bubbles as rigid spheres, under the assumption of ‘dirty’ bubbles,
i.e. in a non-purified water the gas–liquid interface is solidified, owing to the presence
of impurities. We consider air bubbles, with diameter smaller than 1 mm, such that
they act like undeformable spheres (Weber number, We � 1); and we assume that the
density of the bubble gas, ρb, is negligible compared to that of the surrounding liquid
(water), (ρ � ρb ≈ 0). Thus, the bubbles are assumed to be massless spheres. The
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δ̌0 Ǔ∞ ν̌ ǧ ďb d+
b τ+

b Vt/U∞ Vt/urms,0

9.7 mm 0.83 m s−1 10−6 m2 s−1 9.81 m s−2 62 µm 2.4 0.157 2.52 × 10−3 0.08

Table 1. Fluid and bubble properties.

bubble equation of motion, (2.3), includes terms representing the added-mass, carrier
fluid inertia, Stokes drag, buoyancy (Maxey & Riley 1983), and the lift force (Auton
1987). The equations governing the motion of a spatially developing bubble-laden
TBL can be written in non-dimensional form as (Ferrante 2004):
carrier fluid continuity,

∂t (1 − C) + ∂j [(1 − C) Uj ] = 0; (2.1)

carrier fluid momentum,

∂t [(1 − C)Ui] + ∂j [(1 − C)UiUj ] = −∂i[(1 − C)p] + ν ∂j [(1 − C)(∂jUi + ∂iUj )]

− fi + (1 − C)gi; (2.2)

bubble acceleration,

dVi

dt
= 3

DUs,i

Dt
+

1

τb

(Us,i − Vi + Vt ) + [(Us − V ) × ωs]i . (2.3)

In the above equations, Ui are the components of instantaneous fluid (liquid)
velocity and p is the pressure. C(x, y, z, t) is the instantaneous local bubble-phase
concentration (or volume fraction) computed from the local number of bubbles Nb

in a given computational cell of volume, Vc, as

C(x, t) =Nb(x, t) [πd3
b /6] / Vc(x), (2.4)

where db is the bubble diameter. Equation (2.4) is valid for the condition db/(2L) � 1,
where L is the macroscopic length scale of variation of the bubble number
density Nb/Vc (Prosperetti & Zhang 1995). The dimensionless kinematic viscosity
is ν = 1/Reδ , where Reδ = Ǔ∞δ̌0/ν̌ is the Reynolds number based on the dimensional
free-stream velocity Ǔ∞, the boundary layer thickness δ̌0 at the inlet plane (x = 0) of
the computational domain, and the kinematic viscosity ν̌. All variables in (2.1)–(2.3)
are non-dimensionalized by Ǔ∞ and δ̌0 (table 1). The force fi in (2.2) is imparted
by the bubbles to the surrounding fluid, and is calculated according to Druzhinin &
Elghobashi (1998) as

−fi = C

(
DUs,i

Dt
− gi

)
, (2.5)

where gi is the component of the gravitational acceleration in the i-direction; gi =
−gδiz for the plate-on-bottom configuration, whereas gi = gδiz for the plate-on-top
case (figure 1), where g is the dimensionless gravitational acceleration.

In (2.3), Us and ωs are respectively the instantaneous fluid velocity and fluid
vorticity at the bubble location, xb(t), and V is the bubble instantaneous velocity;
d/dt ≡ ∂t + Vj∂j is the time derivative in a frame moving with the bubble, D/Dt ≡
∂t + Uj∂j is the time derivative following a fluid element. The bubble response time
τb is defined according to Stokes drag law as τb = d2

b / (36 ν). The terminal velocity
Vt = −2τbgi . Throughout the paper, dimensionless quantities in wall units carry the
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Lx Ly Lz L+
x L+

y L+
z Nx Ny Nz �x+ �y+ z+

min

20 δ0 5 δ0 3.6 δ0 7424 1856 1336 512 256 96 14.5 7.25 0.58

Table 2. Computational mesh details.

superscript +, i.e. U+
1 = U1/uτ , z

+ = z uτ/ν and t+ = t u2
τ /ν, where uτ is the wall friction

velocity.
The computational domain is a parallelepiped whose dimensions Lx , Ly and Lz, and

the corresponding numbers of grid points, Nx , Ny and Nz in the streamwise, spanwise
and wall-normal directions respectively are listed in table 2. The computational mesh
is equispaced in the streamwise and spanwise directions, with grid spacings �x+ and
�y+ (table 2), whereas in the vertical direction, the mesh is stretched gradually via
mapping a uniform computational grid ζ into its non-uniform counterpart z with a
combination of hyperbolic tangent functions (Ferrante & Elghobashi 2004) with the
closest grid point to the wall located at z+

min = 0.58.
The initial (t =0) velocity field of the fluid throughout the domain was identical

to the instantaneous velocity field (t+ = 2600) computed by DNS of the single-phase
TBL (φv = 0) on the same mesh (table 2). The generation of the turbulent flow
conditions at the inlet plane (x = 0) are described in detail by Ferrante & Elghobashi
(2004). Periodic boundary conditions were imposed only in the spanwise y-direction
for the fluid velocity components and pressure. The no-slip condition for the fluid
velocity (U1 = U2 = U3 = 0) and Neumann condition for the pressure (∂zp =0) were
imposed at the wall boundary, z = 0. The Neumann (stress-free) condition for the
fluid velocity components (∂zU2 = ∂zU3 = 0) and Dirichlet condition (U1 = 1 and p = 0)
were imposed at the free-stream boundary, z = Lz. At the outflow plane (x = Lx) the
convective condition, ∂tUi + Uc ∂xUi = 0, was imposed for the velocity components,
where Uc is the instantaneous mean convective fluid velocity at the exit plane. A
zero pressure gradient in the streamwise direction (∂xp =0) was imposed at both
the inflow and outflow planes. At time t = 0 the bubbles were released randomly
in the computational domain inside the boundary layer zone (z < δ0), with each
bubble velocity component set equal to that of the fluid at the bubble location.
Bubble–bubble and bubble–wall collisions were neglected, since the instantaneous
local maximum C rarely exceeded 10%, and a negligible number of bubbles comes
in contact with the wall. In order to keep the average volume fraction of bubbles
in the computational domain, φv , constant in time, when a bubble exits one of
the domain boundaries it is reinjected at a random location inside the boundary
layer according to a Gaussian distribution for the streamwise location, except for
the spanwise boundaries (y = 0 and y = Ly) where periodicity was applied. The
governing equations were discretized in space using a second-order finite difference
scheme, except for the mean advection terms, which were evaluated via a fifth-order
upwind differencing scheme. Time integration was performed using the second-order
Adams–Bashforth scheme. The details of our numerical method are provided by
Ferrante (2004). The bubble equation of motion, (2.3), was solved in time for each
bubble using the Adams–Bashforth scheme to compute the bubble velocity. The fluid
velocity, Us, fluid vorticity, ωs, and fluid Lagrangian derivative, DUs/Dt , at the bubble
location were computed via a fourth-order-accurate fully three-dimensional Hermite
cubic interpolation polynomial adapted to a non-uniform mesh (Ferrante 2004). The
bubble positions were then updated from the time integration of the bubble velocity.
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A B C D E F G H

φv 0 0.001 0.01 0.01 0.02 0.02 0.001 0.001
NB 0 8×105 8×106 8×106 16×106 16×106 8×105 8×105

gi – −g δiz −g δiz g δiz −g δiz g δiz 0 0
fi – �=0 �=0 �=0 �=0 �=0 �=0 0

Cf,A − Cf

Cf,A
0 3.5% 11.7% 15.4% 14.1% 20.2% 3.8% 3.7%

Pustr>0.04 8.5% 7.2% 5.5% 5.4% 4.9% 4.3% 7.8% 7.3%

Table 3. Physical parameters for the eight cases (A–H) studied and percentage reductions of
skin friction and streak velocity.

Figure 2. (a) Mean streamwise velocity profile and (b) Reynolds stresses profiles, at Reθ =
1430. Present DNS, case A (lines); experimental data of DeGraaff & Eaton (2000) (symbols).

3. Results
Table 1 shows the properties of the bubbles used in the present study. In tables 1

and 2 the variables written in wall units, and z+
0 in figures 4–7, were non-

dimensionalized using the friction velocity at the inflow plane, uτ = 0.0464 (Reθ =
1020) and ν = 1.25 × 10−4. The parameters (φv , NB , gi and fi) and the percen-
tage reduction of skin friction in the eight test cases studied are listed in table 3.
NB is the total number of bubbles in the computational domain.

3.1. Single-phase TBL: comparison with experiments

We now compare our DNS results for the single-phase TBL (case A) with the
experimental data of DeGraaff & Eaton (2000) for a spatially developing turbulent
boundary layer over a flat plate at Reθ = 1430. We write the fluid velocity component,
Ui , as the sum of its mean and fluctuation, Ui(x, y, z, t) = 〈Ui〉(x, z) + ui(x, y, z, t),
where 〈. . .〉 represents, throughout the paper, spatial averaging in the spanwise (y)
direction in addition to time averaging of the enclosed quantity, and ui is the local
instantaneous deviation from 〈Ui〉. Figures 2(a) and 2(b) display the comparison in
wall units for the mean streamwise velocity, 〈U1〉+, and three Reynolds stresses at
x = 18.8δ0, where Reθ = 1430. The mean velocity profile is in excellent agreement with
the experimental profile. The agreement for the normal Reynolds stresses 〈u2

1〉+ and
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Figure 3. (a) Spatial development of Cf x; (b) temporal development of Cf t/Cf 0.

〈u2
3〉+ is very good. The difference in the magnitude of the peak of the turbulent

shear stress, 〈u1u3〉+, is probably due to experimental uncertainty. DeGraaff & Eaton
(2000) indicate a 10% error in the measured value of 〈u1u3〉+. A similar discrepancy
was found by DeGraaff & Eaton (2000) in comparing their measurements with the
DNS results of Spalart (1988) (Reθ = 1410). Our computed skin friction coefficient
(Cf x = 2 τw/(ρ U 2

∞) = 3.96 × 10−3, where τw = µ[∂z〈U1〉(x, z)]z = 0) at Reθ = 1430 is
nearly identical to that measured (Cf x = 3.97 × 10−3) by DeGraaff & Eaton (2000).

3.2. TBL laden with microbubbles

The spatial streamwise development of the skin friction coefficient, Cf x , averaged in
time and in the spanwise direction, is shown in figure 3(a). The temporal development
of the skin friction coefficient, Cf t , averaged in both the spanwise and streamwise
directions is shown in figure 3(b), normalized by its value at t =0, Cf 0. Table 3

shows the reduction of Cf = (1/Lx)
∫ Lx

0
Cf xdx and it ranges from 3.5% to 20.2%

with respect to that in case A, Cf,A. In all the bubble-laden cases (B–H), Cf t is
reduced at all times and Cf x is reduced at nearly all x locations in comparison to the
single-phase TBL (case A). The reduction of Cf t is monotonic with increasing the
average volume fraction, φv , of the bubbles for the same orientation of gravity (cases
B, C and E, or D and F in figure 3b). For the plate-on-top cases (D and F), Cf t and
Cf x are smaller than those for the plate-on-bottom cases (C and E) with the same
φv . These results are in qualitative agreement with the experimental data of Madavan
et al. (1984, 1985) and Pal et al. (1988) obtained at higher Reynolds numbers and
higher bubbles volume fractions than those of the present study. In order to explain
the physical mechanisms responsible for drag reduction in a bubble-laden TBL, we
start by analysing the effects of microbubbles on the mean fluid velocity components.
In accordance with the Cf x reduction, the mean streamwise fluid velocity, 〈U1〉, is
reduced in cases B–F compared to that in case A, as shown in figure 4(a), for the
streamwise location x = 18.8δ0. Figure 4(b) shows the simultaneous increase of the
mean vertical fluid velocity, 〈U3〉, for cases B–F in comparison to case A.

In order to investigate how the microbubbles modify both 〈U1〉 and 〈U3〉, we note
that mathematically there are only two sources attributed to the bubbles presence in
the fluid continuity and momentum equations (2.1) and (2.2). The first is the coefficient
(1 − C) and the other is the force term fi . There is the additional external effect gi in
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Figure 4. (a) Mean streamwise fluid velocity profile and (b) mean vertical fluid velocity
profile, at x = 18.8δ0 (A–F).

Figure 5. (a) Mean vertical fluid velocity profile (A, B, G and H) and (b) mean fluid velocity
divergence, at x = 18.8δ0.

both the fluid momentum equation (2.1) and the bubble acceleration equation (2.3).
We follow a step-by-step elimination process to examine the relative contribution of
each of the above three factors (gi , fi and (1 − C)) to the drag reduction process. We
first set the gravitational acceleration gi to zero in case G. Figure 5(a) shows that
〈U3〉 for case G is almost identical to that of case B for the same volume fraction,
φv = 0.001. Figures 3(a) and 3(b) show that eliminating gravity has negligible effect
on the drag reduction for the plate-on-bottom cases (B and G). Of course the results
for plate-on-top cases (D and F) and plate-on-bottom cases (C and E) differ only due
to the effects of gravity, owing to the tendency of bubbles to accumulate near the wall
in the former cases (see figure 6a), as was observed in the experiments of Pal et al.
(1988). Next, we set both the coupling force fi and the gravitational acceleration gi

to zero in case H. Figures 3(a), 3(b) and 5(a) show that the distributions of Cf x , Cf t

and 〈U3〉 in case B are nearly identical to those in case H. We conclude from the
above two tests that the predicted drag reduction in our DNS results is caused almost
entirely by the (1 − C) coefficient in the fluid continuity and momentum equations.
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Figure 6. (a) Mean bubble concentration and (b) mean fluid velocity derivatives ∂zU3 and
∂xU1, at x = 18.8δ0.

We thus refer to the effect of (1 − C) as the velocity divergence effect since the fluid
continuity, (2.1), can be rewritten as:

∂Ui

∂xi

=
1

(1 − C)

DC

Dt
. (3.1)

Equation (3.1) indicates that if the local volume fraction of the bubbles, C(x, y, z, t),
increases, the fluid velocity divergence becomes positive, 〈∂iUi〉 > 0 (figure 5b), in the
regions of the flow populated by bubbles (figure 6a). Furthermore, the well-established
flow features in the single-phase TBL: 〈∂zU3〉 � 0 and 〈∂xU1〉 � 0 for z � 0 (figure 6b),
and 〈∂yU2〉 =0, are still satisfied in the bubble-laden TBL. However, in contrast to
the single-phase TBL, where |〈∂zU3〉| = |〈∂xU1〉|, we have in the bubble-laden TBL
|〈∂zU3〉| � |〈∂xU1〉| (figure 6b). The increase of 〈∂zU3〉 in the bubble-laden cases with
respect to the single-phase flow (figure 6b) creates the larger 〈U3〉 (figure 4b), which
in turn reduces 〈U1〉 (figure 4a).

Now, in order to explain how the 〈U3〉 created results in the reduction of the wall
skin friction in the bubble-laden TBL, we first investigate the effect of 〈U3〉 on the
near-wall coherent structures. We identify the quasi-streamwise vortical structures
using the method of Jeong & Hussain (1995), who defined λ2 as the second largest
eigenvalue of the tensor (SikSkj + ΩikΩkj ), where Sij ≡ (∂jUi + ∂iUj )/2 is the strain
rate tensor, and Ωij ≡ (∂jUi − ∂iUj )/2 is the rotation rate tensor. Jeong & Hussain
(1995) showed that connected flow regions of negative values of λ2 identify cores
of vortical structures. We applied this method to our TBL flow, and observed that
the vortical structures populating the buffer layer in the bubble-laden TBL remain
inclined almost in the streamwise direction (quasi-streamwise vortical structures) as
in the single-phase TBL. This was indicated by the profiles (not shown) of the
correlation coefficients, Ri (Jeong et al. 1997), between −λ2 and the absolute values
of the vorticity components, ωi , as they remain nearly identical for the different cases
A–F. The vortical structures are oriented nearly in the streamwise direction x for both
the single-phase and bubble-laden TBL, since Rx is larger than Ry and Rz inside the
buffer layer (10 < z+

0 < 40), where the near-wall coherent structures are located (Jeong
et al. 1997).
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Case A B C D E F

(λ′
2)max 3.12 2.77 2.54 2.63 2.42 2.65

z+
peak 19.6 21.8 24.0 24.0 26.4 26.4

Table 4. (λ′
2)max, and vertical location of this maximum value, z+

peak, at x = 18.8δ0.

Figure 7. (a) Fluid velocity correlation between the streamwise and vertical components,
〈u1u3〉, and (b) production of turbulence kinetic energy, at x = 18.8δ0.

Large values of λ′
2 (r.m.s. of λ2) indicate flow regions populated by quasi-streamwise

vortical structures (Jeong et al. 1997). Table 4 indicates that the peaks of λ′
2 are reduced

and shifted away from the wall for the bubble-laden flow cases relative to those of case
A, in response to the increased 〈U3〉. The shifting of the vortical structures away from
the wall indicates that the ‘sweep’ and ‘ejection’ events, which are located respectively
at the downward and upward sides of these longitudinal vortical structures, are moved
farther away from the wall compared to those in case A. Thus, the intensity of the
‘wall streaks’ is reduced in the bubble-laden cases. Table 3 displays the values of
probability, Pustr > 0.04, that the streamwise velocity in the plane nearest to the wall
exceeds 50% of its maximum value. Case A has the largest value whereas case F has
the smallest. Since the downward and upward flow regions at the sides of a rotating
vortical structure are characterized by instantaneous negative values of the product
U1U3, then the shifting of these structures away from the wall in the bubble-laden
TBL moves the peak of 〈u1u3〉 towards higher z location (figure 7a) compared to that
of case A. Now the reduction of 〈U1〉 near the plate (figure 4a), decreases ∂z〈U1〉 for
z+

0 < 20. Thus, the combined effect of the shifting of 〈u1u3〉 towards larger values of z

and the reduction of ∂z〈U1〉, reduces the production of the turbulence kinetic energy
(TKE), P = −〈u1u3〉∂z〈U1〉, shown in figure 7(b). Consequently, the peaks of TKE
and enstrophy, 〈ω2

i 〉, (not shown) are reduced and shifted towards higher z locations
in the bubble-laden cases.

4. Discussion
Our DNS results for a microbubble-laden TBL with volume fraction ranging from

φv=0.001 to 0.02 show that the presence of bubbles results in a local positive
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Figure 8. Schematic of the drag reduction mechanism in a bubble-laden TBL:
(a) Single-phase flow, (b) bubble-laden flow.

divergence of the fluid velocity, ∇ · U > 0, creating a positive mean velocity, 〈U3〉,
normal to (and away from) the wall which, in turn, reduces the mean streamwise
velocity and displaces the quasi-streamwise longitudinal vortical structures away from
the wall as in figure 8. This displacement has two main effects. (i) It increases the
spanwise gaps between the wall streaks associated with the sweep events and reduces
the streamwise velocity in these streaks, thus reducing the skin friction by up to 20.2%
for φv =0.02 (case F). (ii) It moves the location of peak Reynolds stress production
away from the wall to a zone of a smaller transverse gradient of the mean streamwise
velocity (i.e. smaller mean shear), thus reducing the production rate of turbulence
kinetic energy and enstrophy.
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